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Abstract We posit that swarm intelligence can be applied

to effectively address requirements engineering problems.

Specifically, this paper demonstrates the applicability of

swarm intelligence to the requirements tracing problem

using two techniques: a simple swarm algorithm and a

pheromone swarm algorithm. The techniques have been

validated using two real-world datasets from two problem

domains. The simple swarm technique generated require-

ments traceability matrices between textual requirements

artifacts (high-level requirements traced to low-level

requirements, for example). When compared with a baseline

information retrieval tracing method, the swarm algorithms

showed mixed results. The swarms achieved statistically

significantly results on one of the secondary measurements

for one dataset compared with the baseline method, lending

support for continued investigation into swarms for tracing.

Keywords Information retrieval �
Requirements traceability � Swarms �
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1 Introduction

Despite the importance of software requirements, far too

many practitioners forge ahead with coding before

understanding the problem that needs to be solved. If

requirements are captured, they may not be documented,

analyzed, kept up to date, or traced as the software

development life cycle progresses. There is much evidence

to show that the lack of requirements, or of quality

requirements, inevitably leads to low software quality [1–

4]. Requirements are crucial when developing mission- or

safety-critical systems, where the consequences of poor

quality can be the loss of life or damage to the

environment.

Activities can be undertaken to improve the quality of

requirements, including, but not limited to, requirements

consistency checking (functional and non-functional),

interface requirements consistency checking, requirements

reading (to look for fault types such as ambiguous

requirements, incomplete requirements, etc.), and require-

ments tracing (to ensure that requirements are addressed in

subsequent artifacts). Some of these activities have been

supported by automated techniques. These techniques,

though, are not fully automatic, are not general-purpose,

have not been validated on large, real-world systems in

numerous domains, and still require much effort on the part

of the human analyst [5]. As a result, researchers continue

to search for new and better techniques to improve the

quality of requirements.

Swarm techniques apply swarm intelligence, a property

of a non-centralized group of non-intelligent self-organized

agents that collectively behave to perform work [6]. Swarm

techniques have been demonstrated to work well on

problems in nature such as finding the shortest route to a

food source, cooperating in carrying large items, building a

nest, etc. In computer science, swarm techniques have

assisted with problems such as network routing/network

management, power plant maintenance scheduling, load

balancing in distributed systems, image compression,
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personalized web search, etc. Swarm techniques exhibit

emerging behavior not found in deterministic techniques

and often overcome issues such as the problem of local

minima.

Swarm techniques have been successfully applied to

problems in software maintenance. For example, Antoniol

et al. [7] applied a number of such techniques to the

problem of project planning for a large maintenance pro-

ject. Lam et al. [8] applied ant colony optimization (ACO)

to the problem of test sequence generation. Reitz [9]

examined the use of an ant colony in building a software

evolvability component model. Ayari et al. [10] used ACO

to perform test input generation. Such applications are still

lacking in requirements engineering.

These techniques may be more computationally com-

plex than other techniques that have been widely applied in

requirements engineering (such as information retrieval

techniques for requirements tracing). However, it is quite

possible that the techniques can be adapted in such a way

as to still permit practical application. An example of

method adaptation can be found in requirements tracing:

the application of information retrieval techniques was

adapted to take advantage of unique properties of the

requirements engineering domain, namely small datasets,

queries that may be dependent on each other, i.e., related

queries known in advance, etc.

Similarly, we have examined the characteristics of the

requirements engineering domain and have found that

swarm techniques may be a good fit: small problem size or

search space, decomposable problem, a certain degree of

non-determinism, etc. Of specific applicability to require-

ments engineering is the emergent behavior feature of

swarm intelligence methods. Emergent behavior is a

byproduct of the main activity of an agent in a swarm. For

example, an ant prefers a path with a stronger pheromone

over one with a weaker pheromone. As a result of this

behavior of an individual ant, the colony of ants can

establish shorter routes.

Porting this idea to requirements engineering, we can

model a swarm in such a way that an individual ‘‘software

ant,’’ with limited reasoning logic, limited knowledge of its

environment, and limited awareness of its immediate sur-

roundings, can discover a target item and bring the whole

colony to it. Then, a group of ‘‘ants’’ can make a decision

about the item in a collective manner. For example, con-

sider the problem of classifying requirements (as non-

functional, functional; or as high risk, low risk). We can

provide some logic for the swarm to cluster the require-

ments by determining certain important characteristics of

what makes a requirement functional/non-functional or

low/high risk, thus adapting the agents to target require-

ments engineering problems of interest. This paper dem-

onstrates such an adaptation to the problem of requirements

tracing. The goal of this research is to build a prototype

model for applying swarms to the requirements traceability

problem and to evaluate its viability.

We choose requirements tracing as the first problem on

which to demonstrate the swarm techniques as it is well

known and there are well established benchmarks for

acceptable performance of methods. There is prior work in

information retrieval that successfully uses swarm tech-

niques to rank retrieved information [11], an important

aspect of requirements tracing.

In addition, the idea of term proximity and ‘‘phrasing’’

for requirements tracing expressed by Zou et al. [12] was

inspirational. This idea can be examined from a different

angle. Swarm agents can establish and promote a link

between two textual documents based on the terms that are

relatively close to each other, proximally, in both docu-

ments. In a sense, swarm agents will have awareness of their

immediate surroundings and cast their votes based on the

small segments of documents that are ‘‘visible’’ to them.

Similar ideas pertaining to ‘lexical affinities’ were

expressed in work by Maarek et al. [13] and Niu and

Easterbrook [14], each considering two term units within a

single sentence. The ‘lexical affinities’ limit the neigh-

borhood window to a maximum of 5 terms apart. In other

words, terms occurring relatively close to each other in two

documents form related phrases. The related phrases can be

viewed as common segments creating a logical link

between the documents.

This idea of using small common segments between two

documents as a link appears to be a valid starting point for

investigating swarm behavior on the traceability problem.

The software ants traverse the search space, consisting of

documents and common vocabulary, with limited knowl-

edge about the environment. They have knowledge about

the immediate surroundings, i.e., some local text segments.

The software ants exchange their knowledge of these text

segments through local interactions. To make the knowl-

edge dissemination widespread among the colony members,

a certain amount of non-determinism needs to be present in

the search and discovery behavior of the software ants.

We start by introducing a simplified ant colony algo-

rithm for tracing textual pairs of requirements artifacts and

validating it on two sets of software requirements from real

projects, comparing the results to those of a typical infor-

mation retrieval (IR) tracing technique. In addition to the

primary measures used in many tracing papers (recall,

precision, F, F2), we also examine the quality of the

techniques from the analyst perspective via the secondary

measures mean average precision (MAP) and the differ-

ence between average similarity (DiffAR) [15]. We then

introduce a more sophisticated ant colony technique that

uses pheromone deposits, also validating it on two datasets.

We found that the simple technique performs comparably

210 Requirements Eng (2011) 16:209–226

123



www.manaraa.com

to the IR method for the smaller dataset. We found that the

pheromone technique enhanced the performance of the

simplified ant colony algorithm [16] in some instances but

decreased it in others. Both methods fared well in terms of

DiffAR. Both methods performed well for MAP at low

thresholds.

The paper is organized as follows. Section 2 provides

background on ant colony optimization. Section 3 dis-

cusses requirements tracing. Section 4 presents related

work. Section 5 discusses the two approaches to tracing

using the ant colony algorithms. Section 6 presents the

validation of the techniques on two datasets. Section 7

presents results and analysis. Section 8 concludes and

discusses future work.

2 Ant colony optimization

Insects such as bees and ants, small and simple individu-

ally, can accomplish tremendous tasks in a collective

effort. Of particular interest to computer scientists is that

the insects’ achievements and actions are all accomplished

through local peer-to-peer interactions.

A number of scientists have studied the behavior of ants in

foraging for food. Jean-Louis Deneubourg described a self-

organizing behavior of ant colonies, where ants used pher-

omone communication [17]. The idea of using pheromone

trails as a method of communicating through the environ-

ment is the heart of the ant colony optimization (ACO)

algorithm [18]. This algorithm has been used in a number of

computer science applications, such as the traveling sales-

person problem, and has applicability to requirements

engineering problems. We present the algorithm below.

Consider a graph G = (V, E) and a task of finding the

shortest path between two nodes in the graph. For each edge

between the nodes i and j in the graph, we assign a phero-

mone value sij. In the initial step, the ACO will assign to each

edge in the graph a zero pheromone value, sij(0). Also, a

group of «ants» k = 1,…,n is positioned at the source node.

For each iteration of the algorithm, each ant builds a

path to the destination node. Also, at each node, each ant

decides the next link to take. If ant k is at node i, the

probability p of selecting the next node j [ Nk
i , which

belongs to a set of nodes adjacent to i [18] is:

pk
ijðt) ¼

sa
ijðtÞP

j2Nk
i

sa
ijðtÞ

if j 2 Nk
i

or

0 if j 62 Nk
i

8
><

>:
: ð1Þ

In the formula above, «a» is a parameter which

amplifies the attractiveness of the pheromone trail.

In formula 1, when a and s(t) = 1, the algorithm sim-

plifies down to navigating graph G in a non-deterministic

fashion. The probability of selecting the next node j for ant

k located in node i is the inverse of the number of nodes

accessible from i.

3 Requirements tracing

Requirements tracing is defined as ‘‘the ability to describe

and follow the life of a requirement, in both a forwards and

backwards direction’’ [19]. A typical process used for

requirements tracing of natural language artifacts, manual

or automated, generally consists of a number of steps:

document parsing, candidate link generation, candidate

link evaluation, and traceability analysis [5]. For example,

if a requirements document is being traced to a set of use

cases, document parsing extracts elements from the two

artifacts resulting in uniquely identified requirements ele-

ments and uniquely identified use case elements. At this

point, a human analyst or tool establishes relationships or

links between the elements, perhaps by selecting one

requirement element and then performing string searches

(using important words or terms in that element) into the

collection of use case elements. If a tool is being used, it

may be the case that the human analyst or tool assigns

keywords to the requirements and use case elements and

then performs keyword matching in order to generate what

are called ‘‘candidate links’’.

Candidate link evaluation deals with assessing the links

generated by a tool to ensure that they are correct. Trace-

ability analysis, often performed manually by an analyst,

deals with deciding if the high-level artifact has been

‘‘satisfied’’ by the lower level artifact, e.g., does this use

case satisfy the given requirement? In this work, we con-

centrate on adapting the swarm technique to the candidate

link generation problem.

3.1 Terminology

First, we define some terminology. The high- and low-level

textual elements are called documents. Documents contain

words or terms. The collection of all terms from all doc-

uments is called the dictionary or vocabulary. The col-

lection of all terms in a document is called the document

corpus. The inverted index lists all documents where a

particular term occurs. Term frequency TF t,d is the count of

how many times a particular term occurs in a document.

Inverse document frequency, IDFt, is a calculated value:

IDFt ¼ log
N

DFt

� �

; ð2Þ

where N is the total number of documents in the collection,

and DFt is document frequency, e.g., the number of doc-

uments where a given term occurs.
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To trace high-level textual elements (say from a

requirements document) to low-level textual elements (say

to a design document), we use swarm agents that traverse

the collection of all documents and the vocabulary shared

by the documents.

3.2 Measures

The tracing results are compared with an answer set of

correct or ‘‘true’’ links, prepared by experts. Results are

then evaluated using recall and precision [20].

Recall R is evaluated as the total number of relevant

retrieved documents divided by the total number of rele-

vant documents in the whole collection:

R ¼ #of relevant retrieved

# relevant in collection
ð3Þ

Precision P is evaluated as the total number of relevant

retrieved documents divided by the total number of

retrieved documents:

P ¼ #of relevant retrieved

# retrieved
ð4Þ

Precision and recall can be combined into a weighted

harmonic mean:

F ¼
b2 þ 1
� �

P � R

b2Pþ R
; where b2 2 ½0;1Þ: ð5Þ

When b2 = 1, precision and recall are balanced in the

measure, this is called F1 measure. When b2 = 2, recall

has more weight than precision, this is called F2 measure.1

A number of researchers have posited the importance of

evaluating candidate link list quality from the perspective

of the analyst who must examine such a list (and make the

final determination of whether a retrieved item is relevant

or not) [5, 12, 15, 21]. Toward that end, we apply two

additional measures DiffAR and MAP, sometimes referred

to as secondary measures [15]. DiffAR is evaluated as the

difference between the average similarity of the relevant

matches (true positives) and non-relevant matches (false

positives). DiffAR examines the internal structure of a

candidate link list. Similar to how humans work with

results returned from a web search, tracing analysts will

examine the highest ranking elements in the candidate link

list first. It is important that the relevance weights correctly

separate true positives from false positives. Toward that

end, DiffAR is the difference in the average relevance

between true-positive links and false-positive links. For-

mally, it is defined as:

DiffAR¼
P
ðd;hÞ2LT

simðd;hÞ
LTj j

�
P
ðd0;h0Þ2LF

simðd0;h0Þ
LFj j

; ð6Þ

where h and d belong to sets of textual artifacts

H = {h1,…, hn} and D = {d1,…, dk}; L = {(d, h)|sim(d,

h)} is a set of candidate links. LT is a subset in L of true

links; LF is a subset in L of false links.

MAP measures ‘‘the quality across the recall levels’’ [20].

The higher the MAP, the closer the true links are to the top of

the candidate link list. For hj in a set of textual artifacts

H = {h1,…, hn}, a subset of relevant documents {d1,…,

dmj
}, and LJt [ L = {(d,h)|sim(d,h)} a subset of true links

ranked by relevance, MAP is evaluated as follows:

MAP(H) ¼ 1

Hj j
XjHj

j¼1

1

mj

Xmj

k¼1

PrecisionðLjTÞ ð7Þ

A high value of MAP implies that true links are ranked

higher in the list of the returned results.

Zou et al. [12] use average precision change (AP) to

measure the internal quality of candidate link lists. It looks

at a number of recall levels (such as 10% recall, 20%

recall, etc.) and averages the precision change at each, thus,

returning one value. We find MAP to be a better measure

as it is more widely accepted in the IR community.

In summary, recall is a coverage measure, precision is a

signal-to-noise ratio, F measure combines recall and preci-

sion, F2 combines recall and precision with recall being

valued over precision, DiffAR looks at relevance weights

within candidate link lists, and MAP examines how precision

changes in the internals of a candidate link list. The first four

measures are important when evaluating traceability tech-

niques from a researcher’s perspective: how accurate is our

tool and are we able to generate candidate link lists that are

comparable in quality or better than existing methods? Dif-

fAR and MAP examine the quality of the internal structure of

candidate links, so this is from the perspective of a human

analyst who must work with the lists. It is possible to generate

candidate link lists that have high recall and precision, but

have all the true positives listed in the lower half of the list.

This will surely frustrate analysts as they look through highly

ranked items that are NOT links. A better automated tool

would retrieve high-recall and high-precision lists that

ALSO have high DiffAR (the average relevance of true

positives is higher than that of false positives) and high MAP

(meaning that precision stays high at various recall levels

(10, 20%, etc.) within the candidate link lists).

4 Related work

We address related work in the areas of traceability link

generation and swarm techniques below.

1 Note that F and F2 values reported in this paper differ from the RE

2010 conference paper due to a formula error (b2 was not squared in

the RE 2010 results but is here).
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4.1 Candidate link generation/text analysis

As mentioned in Sect. 3, candidate link generation is

concerned with retrieving relevant elements from a

given artifact pair. We focus on textual requirements

artifacts.

Much work has been accomplished in applying infor-

mation retrieval techniques to the candidate link generation

problem. Antoniol et al. [22] used the vector space model

(VSM) and a probabilistic model to recover traceability

from source code modules to man pages and functional

requirements. With VSM, they achieved the highest recall

(100%) for the Albergate dataset by setting the threshold to

10% of the highest similarity measure, but only achieved

precision of 11.98%.

Marcus and Maletic [23] applied latent semantic

indexing (LSI) to the same datasets used by Antoniol et al.

They achieved precision of 16.38% at 100% recall for the

Albergate dataset. Hayes et al. [24] applied VSM with

thesaurus to a dataset and compared this method to manual

tracing and to a proprietary tool. They found that manual

tracing resulted in higher precision (46%) than the pro-

prietary tool (38.8%) or the VSM ? thesaurus method

(40.7%), but that the VSM ? thesaurus method outper-

formed the other two approaches in terms of recall (85.4%

compared with 43.9% for manual and 63.4% for the pro-

prietary tool). Egyed et al. [25] found that it takes, on

average, 1–2 min to manually recover code to requirements

traces. They also found that recovery of method traces

costs 3–6 times more than recovering class traces (also

manually). Panis [26] surveyed 26 engineers at Teradyne

and found that engineers prefer to see a traced require-

ment’s content versus just an identifier. He found that

engineers who depend on traceability information when

creating documents most value it.

Zou et al. [27] examined ways to improve the precision

of automated IR traces by using phrasing, obtaining

improvements of almost 20% for one dataset when exam-

ining the Top 5% of the returned candidate links. Sunda-

ram et al. [15] studied the effect of vocabulary base on

traceability accuracy (using both artifacts versus just the

low-level artifact to build the vocabulary) and found sup-

port for using only the low-level artifact. Zisman and

Spanoudakis [28] examined ways to generate traceability

links by applying rules to artifacts that had been tagged

with parts of speech.

In general, the above techniques have been able to

achieve excellent recall [24] but often at the expense of

precision that is not acceptable or is only borderline

acceptable. Our work differs in that it uses a greedy

algorithm approach to generate candidate link lists; it does

not require parts of speech tagging, phrasing, or specifi-

cation of probabilities.

4.2 Swarm techniques

There are a number of researchers who have applied the

particle swarm optimization (PSO) algorithm to the prob-

lem of analyzing textual documents. PSO is a direct search

method for some optimal solution in a search space. The

main characteristic of the PSO algorithm is that each

member of the swarm adjusts its behavior based on the

information obtained from its neighbors in the search

space. The swarm agents are modeled to have a position in

a search space and a velocity. The agents iteratively eval-

uate some fitness function where the agents’ position and

velocity are used as input parameters. The agents operate

on the premise of their own ‘‘best’’ position and the

swarm’s and the neighbors’ ‘‘best’’ position. The ‘‘best’’

implies a point in the search space where the fitness

function has reached some optimal value [29].

Merwe and Engelbrecht applied data clustering using

PSO on six different classification problems [30]. For

example, 400 vectors were randomly created in two-

dimensional space from the Wisconsin breast cancer

database, with the objective of classifying data as repre-

senting benign or malignant tumors. Diaz-Aviles and Nejdl

proposed a swarm ranking method for IR using particle

swarm optimization on the benchmark database LETOR.

The swarm first undertook a learning phase to rank IR

results [11]. Cui et al. used PSO to cluster text documents

[31].

In the above work, the researchers model the search

space as a hyperspace of words or terms. The fitness

function is, in some form or fashion, a Euclidian distance in

the vector space of terms between the multidimensional

points. The proposed vector space model treats each term

as a dimension of the multidimensional space. For exam-

ple, for data clustering, Merwe and Engelbrecht [30] used a

variation of a distance vector to randomly seed centroid

vectors, e.g., to seed some starting search points in the

search space. The drawback of a VSM approach, in gen-

eral, is that it treats terms as separate dimensions of the

search space. Each new term increases the vector space

dimension size and hence increases the complexity and

number of necessary computations.

Diaz-Aviles and Nejdl [11] used training (learning) for a

collection of queries and resulting retrieved documents.

They used a training set as well as a validation set to

attempt to reduce over-fitting. They proposed the method

of Swarm Ranking to optimize the combination of content

and links. The method used the mean average precision as

the fitness function to evaluate the results. They found that

the approach significantly outperformed standard approa-

ches. Our method is similar in that we use a swarm algo-

rithm to rank retrieved low-level requirement elements that

may be relevant to a given high-level requirement. Our
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approach differs in that we do not take a semi- or super-

vised learning approach and thus do not require a training

set.

Aghdam et al. [32] used ACO to select text features. In

this work, the ACO algorithm did not have any a priori

knowledge about the text features. Our method is similar in

that it does not involve ‘‘learning’’ and in that the agents do

not have predetermined knowledge about the space they

traverse. The first method that we apply is a simple version

of ACO. The second method uses pheromone deposits on

the links and terms to influence the path selection behavior

of a swarm agent. We use the phrase ‘‘simple’’ because

there is no actual use of pheromones. The swarm agents are

given freedom to operate on their own, determining the

search path based on the environment, i.e., term frequency,

weight, etc. The second method uses pheromone deposits

on the links and terms to influence the path selection

behavior of a swarm agent. Note that there is no ‘‘learning’’

or predetermined knowledge about the space being tra-

versed. For both methods, the search and discover phase of

the algorithm is ‘‘random roulette’’ and is greedy. The term

and document frequencies of the text collection are used as

guiding heuristics for agent behavior. Technically, the

algorithm is still a swarm, but it is not as intelligent and

cooperative as ACO. In the simple approach, the swarm

agents are given freedom to operate on their own, deter-

mining the search path based on the environment, i.e., term

frequency, weight, etc. In the second method that we apply,

pheromones are deposited, but there is still no ‘‘learning’’

or predetermined knowledge about the space being

traversed.

5 Methodology

Two techniques are presented in this paper. Preprocessing

techniques that are common to both are discussed, followed

by a more detailed look at each technique.

A swarm agent starts from a high-level textual document

and follows a word or term that is present in the high-level

document to a low-level element via the common vocab-

ulary (the inverted index for the collection of both sets of

documents).

First, the documents are parsed, stop words (words such

as ‘the’ and ‘of’) are removed, and each remaining term is

stemmed using Porter’s algorithm [33]. Stemming is a fast

technique to reduce terms to their stem such as ‘comput-’

for ‘computer’ and ‘computing’. Term frequencies for each

document and document frequencies for each term in the

vocabulary are calculated. The VSM method, mentioned in

Sect. 4.1, uses TF-IDF weighting schema (VSM using TF-

IDF weighting is often called simply TF-IDF). Recalling

the definitions for term frequency (TF) and inverse

document frequency (IDF) from Sect. 3.1, we can say that

TF-IDF assigns more weight to the most relevant terms

within a document. The TF-IDF weight for each term is

calculated using the following formula:

TF� IDFt;d ¼ TFt;d � IDFt: ð8Þ

The documents are then tagged as high- or low-level

elements. The preprocessing also builds the inverted index.

The constructed inverted index indicates not only the

textual element associated with a given term, but also the

type of the element: high or low. In applying the swarm of

agents, each high-level element is assigned a fixed number

of agents roughly equal to or greater than the number of

low-level elements.

5.1 Simple swarm

We refer to the simple ant colony algorithm as simple

swarm hereafter. The simple swarm technique is described

as follows in Listing 1:

When all agents reach the low-level elements, we can

determine candidate links. To establish and quantify can-

didate links, we need to count the number of agents that

‘‘made it’’ to the low-level elements, grouping them by

their origin. The origin is the name of the high-level ele-

ment from where the agents started their ‘‘journey’’. If a

low-level element B has at least one agent that came from

element A, we consider this ‘‘count’’ of at least one (1) as a

potential candidate link between A and B. The candidate

links for each high-level element are ordered by the count

of the agents at the low-level elements. Agent counts are

normalized to a value between 0 and 1, with the top low-

level link for each high-level element having a value of 1.

Links are filtered out at fixed threshold intervals to calcu-

late recall and precision values at each cutoff threshold.

Table 1 in ‘‘Appendix’’ lists the recall and precision values

with regard to the cutoff threshold.

Figure 1 depicts the application of the algorithm to a

small example (select terms were chosen for illustrative

purposes). Assume that we have two high-level require-

ments Req1.txt and Req2.txt and use cases UC5.txt and

UC8.txt:

Req1.txt: ‘‘The system shall support personal distribu-

tion lists’’.

Req2.txt: ‘‘The system shall be able to add a contact to

the address list’’.

UC5.txt: ‘‘User edits personal distribution list by adding

new contact’’.

UC8.txt: ‘‘List email contacts’’.

After preprocessing these elements, we determine that

Req1.txt has the terms personal, distribution, and list and

that Req2.txt has the terms list, address, and contact.
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Similarly, we know that the low-level element UC5 has the

terms edit, personal, distribution, and list and that UC8 has

the terms contact, list, and email. The inverted dictionary

for the collection of all documents is used as the common

vocabulary. The terms in the common vocabulary contain

links pointing to the documents in which the terms are

encountered. The vocabulary term links contain the term

frequency count TF and a tag indicating if it is a high- or

low-level element.

As the algorithm starts, a group of agents is assigned to

Req1.txt. In the high-level element, the terms are then

ordered by the TF-IDF weight of each term in the docu-

ment. The agent randomly selects a term, for example, the

agent may pick the term personal. The agent then ‘‘posi-

tions’’ itself in the common vocabulary at the term per-

sonal. The agent then inspects the links from the term

personal to low-level elements. These links are also sorted

in descending order by term frequency. The agent picks the

next link to follow randomly from the top 10 or less can-

didate links. At the last leg of its journey, the agent arrives

at the low-level element. At the end of this loop, the result

composition will have all agents from all high-level doc-

uments located at the low-level elements.

A discussion of thresholds is in order. For the swarm

method, candidate link lists are generated after applying a

threshold filter varying from 0.1 to 0.9. The threshold

indicates a percentage above which links are considered to

be part of the candidate link list. For example, assume that

one hundred agents starting from element Req1.txt traverse

to documents UC1.txt, UC2.txt, UC3,txt, and UC4.txt, of

which 50, 35, 10, 5 agents reach UC1.txt, UC2.txt,

UC3.txt, and UC4.txt, respectively. If 0.7 is selected as the

threshold, then only UC1.txt and UC2.txt are selected for

the candidate link list (normalized values are 1, 0.7, 0.2,

and 0.1, respectively).

The simple swarm method we tested used the TF-IDF

weight and term frequency as the guiding heuristic for the

agents. This version of the algorithm does not use any

pheromones. Formula (1) is not applicable in its classical

sense. This version of the algorithm appears to be a more

focused version of TF-IDF. Nevertheless, the simple

swarm is a stepping stone for the next method, pheromone

swarm.

5.2 Pheromone swarm

The pheromone swarm method we tested used the TF-IDF

weight amplified by log2 of pheromone count on terms and

links as the guiding heuristic for the agents. The distinction

between the simple swarm method and the swarm with

pheromone method lies in the selection of the terms and

links by the swarm agents. A simple swarm agent is driven

to consider, select, and focus on the most important terms

in the document mostly at random (with some heuristic

based on TF-IDF value of a term in a document). The

agents in the pheromone swarm take into consideration

pheromone deposits on the links and terms to choose the

next step of their journey. This allows the pheromone

swarm to search, discover, and guide swarm members to a

target location via local interactions in the search space.

The agent’s decision on what term to select or what path to

take is influenced by presence of pheromone markings on

the inspected object, e.g., terms or links. For example,

when an agent starts from a high-level document, the agent

has a higher chance of selecting a term; if the term has

some pheromone markings. The pheromone markings on a

term in a high-level document indicate an established fact

that this particular term is a neighbor to some other term in

some low-level document. This idea of marking the

neighbors and selected terms is based on treating textual

documents as collections of ‘‘phrases’’ rather than as ‘‘bags

Listing 1 Pseudo code for simple swarm

Fig. 1 Agents tracing links from high-level to low-level elements via

vocabulary
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of words.’’ A similar idea was expressed by Zou et al. [12],

where the authors focused on ‘‘two word phrases.’’ Our

approach is different in a sense; we allow phrases to be

loosely defined in a neighborhood of a linking term.

The swarm with pheromones technique is described as

follows in Listing 2:

Once all agents reach the low-level elements, they stay

there. The pheromone deposit can spread further up the

graph to the terms. We use the same methodology to

generate candidate links using the cutoff threshold.

As the algorithm starts, a group of agents is assigned to

Req1.txt. In the high-level element, the terms are then

ordered by the product of TF-IDF weight and log2(Phero-

mone countTerm ? 1) in the document. To smooth the

influence of the pheromone count on terms, we use a

smoothing technique by taking a log2(count ? 1) of the

nonzero count. Related to Formula 1, the parameter t is a

sequential order in which agent s was released (Listing 2,

line 1). The amplification constant a = 1. The agent ran-

domly selects a term, say, from the top ten sorted terms.

Going back to our original example, the agent may pick the

term personal. The agent then ‘‘positions’’ itself in the

common vocabulary at the term personal. Then, the agent

inspects the links from the term personal to low-level

elements. In this algorithm, the links may contain phero-

mone deposits. The pheromone deposits on the link serve

as attractors for the agents for path selection. The phero-

mone deposits on the links indicate that there is another

agent at the low-level document that came from a partic-

ular high-level document. Furthermore, the residing agent

in the low-level document is in the neighborhood of the

term personal. If the source document of the residing agent

is Req1.txt, then our current agent will have a higher

probability of selecting this pheromone-marked link. Once

a link to the low-level document has been selected, the

agent crawls down to a low-level element. There, the agent

diffuses the pheromones on the neighbors of the linking

term. These pheromone deposits will attract ‘‘future’’

agents traveling from the Req1.txt high-level document.

Swarm agents can be instructed to deposit the phero-

mones in the low-level documents beyond the immediate

neighbors. To indicate how far the pheromones are

deposited, we use a delta value. When delta is equal to one,

we deposit the pheromones on the immediate neighbors.

When we set the delta to 3, the agents deposit the phero-

mones up to three neighbors to the left and right of the

linking term in the low-level document. When the delta is

set to 5, five neighbors on either side of the linking term

receive pheromone deposits. If the linking term is at the

end or beginning of a document, and there are no ‘‘next 3

neighbors’’ on the right or left, only the present side of the

linking term’s neighborhood receives pheromone deposits.

The pheromone swarm algorithm is complexity of

O(N3logN). The algorithm has to iterate through each

swarm agent, each high-level document, and sort term

within high-level document by weight and pheromone

deposit. A possible speed up can be achieved by using a

smaller size swarm.

In order to validate the approach, we applied it to two sets

of requirements from software systems. The study design

and threats to validity are presented in the next section.

6 Evaluation

This section will present the study design as well as threats

to validity.

6.1 Study design

Requirements from two projects were used for the study.

The first project is Pine [34], a text-based email system

developed by the University of Washington. This project

consists of a requirements document (49 requirements) and

a set of textual use cases (51). There are 246 true links in

the answer set. Development of answer sets will be dis-

cussed further in the next section. The second project is

CM1, a NASA scientific instrument [35]. The project

consists of a complete requirements document (235

requirements) and a complete design document (220 design

elements). There are 361 true links in the answer set.

Listing 2 Pseudo code for simple swarm
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The independent variable in the study is the method

(TF-IDF, simple swarm, pheromone swarm). The

dependent variables are recall, precision, F, F2, DiffAR,

and MAP. The 11-point interpolated precision–recall

graph is used to evaluate the statistical significance of

the results (sign test). In addition, the Wilcoxon signed-

ranks test is applied to the DiffAR and MAP results to

test for significance at the 0.05 level. In cases where the

number of queries returned with relevant links is dif-

ferent, the Mann–Whitney U test is used instead of the

Wilcoxon.

The study was conducted as follows for the simple

swarm method. After preprocessing, each high-level ele-

ment was selected one at a time and the simple swarm

method was applied. The output was captured as a can-

didate RTM and was compared with the answer set. We

captured information on the number of true links identi-

fied, true negatives, false positives, and false negatives.

From this, we calculated recall and precision (as dis-

cussed in Sect. 3). The F, F2, DiffAR, and MAP measures

were calculated as well. We then compared these mea-

sures to those obtained for the same datasets using the

Vector Space Model with TF-IDF weighting (called TF-

IDF hereafter).

The pheromone study was identical to the above except

that all agents for all high-level elements are released at the

same time versus one at a time.

6.2 Threats to validity

Threats to conclusion validity threaten the ability to draw

the correct conclusions from the study results. Using two

datasets and applying similar treatments, we address the

reliability of the treatment implementation. Both datasets

were analyzed using the simple swarm and pheromone

swarm methods, with the same list of delta values: 1, 3, and

5.2

There is a possible threat to internal validity due to

experimenter bias. We reduced this threat by using data-

sets for which answer sets have been independently ver-

ified by more than one analyst and in some cases more

than one research group (CM1). There was a potential for

bias though in that the answer sets were created by human

analysts that are familiar with the traceability research

domain. We also used a vetted tool, RETRO [36], and

adapted it in order to implement the swarm techniques.

There is a possible threat to internal validity due to

repeated testing. The swarm methods randomly select

links to follow. To mitigate this threat, we ran each

method ten times and examined the mean recall and

precision values. Each method produced average recall

and precision values with variances ranging from 0.003 to

0.06. Variance decreased significantly as threshold values

increased.

We reduced threats to construct validity by using stan-

dard information retrieval measures to evaluate effective-

ness, such as recall, precision, F and F2 measures, as well

as MAP. A further threat involves the parameters used by

the swarm methods. To enhance the selection method of a

‘‘next’’ linking term, we chose log2 of pheromone count on

a given term. This log2 provides a steady slow increase in

the importance of the weight of a term with pheromone

deposit, in contrast to simple counts of pheromone

deposits.

Threats to external validity deal with whether the results

can be generalized. The study used two datasets for vali-

dation. Though both datasets are real projects (not student

projects), one of the datasets is relatively small (49 9 51).

Also, though the datasets do represent two different

domains, it is not possible to state that the study sufficiently

validated all domains or all projects [36].

7 Results and analysis

In this section, we present the results for the two swarm

methods and the TF-IDF method on the Pine and CM1

datasets. In Sects. 7.1–7.3, we evaluate the two swarm

methods on the Pine dataset using the primary measures of

recall, precision, F, and F2 as well as secondary measures

for the Pine dataset. In Sects. 7.4–7.6, we evaluate the two

swarm methods on the CM1 dataset, along with a discus-

sion on secondary measures. Section 7.7 provides an

overall summary of the results. Data points for the figures

presented in this section are presented in Table 1 of

‘‘Appendix’’.

7.1 Simple swarm applied to the Pine dataset

The results for the simple swarm method are presented

using the measures from Sect. 3.2. Overall precision and

recall are examined first, followed by F and F2 measures.3

Figure 2 presents the 11-point interpolated precision–

recall curve for the simple swarm and TF-IDF methods on

the Pine dataset. Simple swarm has higher precision than

TF-IDF at 6 out of the 11 recall points, with most of the

points near the middle to high end of recall. The difference

2 We used delta ranging from 1 to 5. We present the results for 1, 3,

and 5 only. The results corresponding to delta of 2 and 4 followed a

linear trend and fit between the selected values.

3 Note that the RE 2010 paper presented average precision and

average recall for the swarm and TF-IDF methods (which was

mislabeled as overall precision and recall). The results in this paper

use overall precision and recall for all methods.
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in precision however is not statistically significant using

the sign test.

Figure 3 depicts the F and F2 measures for both simple

swarm and TF-IDF methods on the Pine dataset across the

different thresholds. This figure presents a different view of

how the two methods performed when threshold filtering is

applied. F and F2 values for TF-IDF start off high but

degrade as threshold values increase. Simple swarm F and

F2 values, on the other hand, do not degrade as quickly as

TF-IDF, performing best between threshold values of 0.2

and 0.4. Figure 3 also shows that simple swarm has a more

consistent recall/precision tradeoff compared with TF-IDF

when using threshold filtering. While TF-IDF shows a

consistent decline in performance as threshold values

increase, simple swarm shows an increase in performance

at lower threshold values before degrading at a slower rate

compared with TF-IDF as threshold values increase. This

behavior can be explained by the fact that agents tend to

gather around a smaller subset of elements as threshold

values increase. The simple swarm method ‘‘directs’’ each

swarm agent to consider and focus on the most important

terms in the document, allowing agents to perform a more

focused search. After passing an optimum threshold, agents

start missing correct targets, e.g., low-level elements that

are part of the correct links to the high-level element from

which the agents started the journey.

Another explanation for the difference in F and F2

measure behavior between TF-IDF and simple swarm is

how each link’s weight is calculated. TF-IDF link weights

are measures of cosine similarity between the weighted

keyword vectors of two documents [20]. Link weights

above 0.8 are uncommon using TF-IDF due to the fact that

multiplication of two numbers between 0 and 1. Swarm

methods, on the other hand, calculate link weights by

dividing each link’s agent count by the largest agent count.

Using this method, the top-most link always has a weight

of 1. The difference in how weights are calculated does not

prevent the methods from being compared appropriately as

links are filtered using the same threshold values for both

methods. The difference in F and F2 behavior indicates that

TF-IDF achieves peak scores at lower threshold values

compared with swarm. Both methods achieved comparable

peak F and F2 values at different threshold values, e.g. TF-

IDF at 0.1 and simple swarm at 0.2 and 0.4.

Pheromone swarm precision deteriorates below the 0.2

threshold but still remains near the 0.9 range.

Figure 4 presents the 11-point interpolated precision–

recall curve for the pheromone swarm and TF-IDF methods

on the Pine dataset. Pheromone swarm gains a slightly

higher precision than TF-IDF at several points for various

delta values. The difference in precision, however, is not

statistically significant using the sign test.

Figure 5 depicts the graph of the F measure for TF-IDF

and pheromone swarm. Peak F values for pheromone

swarm delta = 1 and delta = 3 are comparable to the TF-

IDF Peak F value, e.g., 0.58, 0.56, 0.58, respectively.

Pheromone swarm does not exhibit the same F/F2 trend as

simple swarm when threshold values increase. The

decrease in F values for the pheromone swarm is still

slower than TF-IDF, indicating that the precision/recall

tradeoff does not decrease as fast with each increasing

threshold value.

Figure 6 depicts the graph of the F2 measure for TF-IDF

and pheromone swarm for the Pine dataset. The trend in the

F2 graph is similar to Fig. 5, with TF-IDF outperforming

pheromone swarm 0.66–0.61, respectively, at the 0.1

threshold. Even so, the recall/precision tradeoff is still

slower compared with TF-IDF.

7.2 Secondary measures for the Pine dataset

Figure 7 shows DiffAR performance for simple swarm,

pheromone swarm, and TF-IDF methods. All swarm

methods have consistently higher DiffAR values compared

with TF-IDF. Simple swarm performed the best among all

methods, with DiffAR going from 0.41 to 0.93 as threshold

values increase. This suggests that link weights from

swarm methods correlate more with link correctness.

Achieving higher DiffAR represents work that is less

frustrating for human analysts, who must ultimately vet all

candidate links to form the final traceability matrix.

Figure 8 plots MAP versus Recall for the simple swarm,

pheromone swarm, and TF-IDF methods. The simple

swarm method returns more correct links at higher MAP

with the first three thresholds compared with all the other

swarm methods. Compared with TF-IDF at the 0.1

threshold, simple swarm achieved 0.76 MAP at 0.86 recall

while TF-IDF achieved 0.75 MAP at 0.72 recall.

Fig. 2 11-point interpolated precision–recall curve for TF-IDF and

simple swarm for the Pine dataset
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Fig. 7 DiffAR versus recall for simple swarm, pheromone swarm,

and TF-IDF for the Pine dataset

Fig. 3 F and F2 measures for TF-IDF and simple swarm on the Pine

dataset

Fig. 4 11-point interpolated precision-recall curve for pheromone

swarm and TF-IDF for the Pine dataset

Fig. 5 F measure for TF-IDF and pheromone swarm for the Pine

dataset

Fig. 6 F2 measure for TF-IDF and pheromone swarm for the Pine

dataset

Fig. 8 MAP versus recall for simple swarm, pheromone swarm, and

TF-IDF for the Pine dataset
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7.3 Simple swarm on CM1 dataset

Next, we examine the results for the CM1 dataset. Figure 9

shows the recall and precision values for the simple swarm

and TF-IDF methods. Note that precision values for this

dataset are significantly lower than Pine due to the larger

size of the dataset. This is a common phenomenon for IR

methods (that larger datasets yield smaller precision

values).

The precision/recall tradeoff between the two methods is

slightly different than the tradeoff seen in the Pine dataset.

Precision increases slowly when recall decreases, e.g., for

simple swarm, precision only increases from 0.04 to 0.07

while recall drops from 0.8 to 0.5. This indicates that

simple swarm agents are not picking the correct low-level

elements as threshold values increase. It is apparent that

search options given to the swarm agents restricted their

options to explore and directed them to a limited number of

low-level elements.

Figure 10 shows the F and F2 measures for the simple

swarm and TF-IDF methods. The F and F2 measurement

for simple swarm on CM1 did not exceed 0.25. Note that

the F measure for simple swarm did not change signifi-

cantly; it varied from 0.15 to 0.24. TF-IDF achieved a peak

F value of 0.28 and peak F2 value of 0.37, significantly

outperforming simple swarm. For CM1, the TF-IDF

method performed better than simple swarm for both F and

F2 measurements. TF-IDF performed best at the 0.2

threshold value, while simple swarm performed best at the

0.8 threshold for F and the 0.5 threshold for F2. Precision

for simple swarm ranged from 0.04 to 0.19, contributing to

the low F/F2 values and indicating that the two document

levels contained many ‘‘coincidental matches’’; that is to

say, even if the elements contained many similar terms,

they were not necessarily classified as true links in the

answer set.

7.4 Pheromone swarm on the CM1 dataset

Figure 11 shows the precision–recall curve for the phero-

mone swarm and TF-IDF methods where agents deposit the

pheromones up to 1, 3, and 5 neighbors away, e.g.,

delta = 1, 3, and 5. Pheromone swarm performs worse at

almost all recall points except for 0.5 recall where phero-

mone swarm delta = 1 and 3 ties with TF-IDF. Note that

delta does not have much of an effect on precision for most

of the recall points.

Simple swarm in Fig. 9 performs comparably with

pheromone swarm, with pheromone swarm method yield-

ing a more focused search compared with simple swarm.

The pheromone enabled swarm agents still narrow their

options to explore (compared with the simple swarm), yet

this time the selection of the candidate links is done a bit

more accurately.

Figure 12 shows the F and F2 measures for the phero-

mone swarm and TF-IDF methods. The F measurement

stayed under 0.19; at the same time, F2 reached 0.26 at the

Fig. 9 11-point interpolated precision–recall curve for the simple

swarm and TF-IDF methods on the CM1 dataset

Fig. 10 F and F2 for the simple swarm and TF-IDF methods on the

CM1 dataset

Fig. 11 11-point interpolated recall–precision curve for pheromone

swarm, delta = 1, 3, 5, and the TF-IDF methods for the CM1 dataset
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threshold value of 0.3. Note that the F measure mostly

remained in the narrow ‘‘corridor’’ between 0.12 and 0.19.

The ‘‘corridor’’ of F2 values was between 0.17 and 0.26 in

the CM1 dataset. TF-IDF outperforms pheromone swarm,

with similar results compared with simple swarm,

although, the peak F2 value for pheromone swarm is at the

0.2 threshold.

Figures 13 and 14 show the F and F2 measures for the

TF-IDF and pheromone swarm methods for CM1. F mea-

sure for pheromone swarm increases slowly with each

threshold increase while F2 measure slowly decreases

instead. Pheromone swarm delta = 3 seems to perform

better than the other two delta values, achieving peak F

value of 0.20 and peak F2 value of 0.25. Expanding the

pheromone affected neighborhood does not seem to

improve the performance of the method.

7.5 Secondary measures for the CM1 dataset

Figure 15 shows DiffAR performance for simple swarm,

pheromone swarm, and TF-IDF methods. Similar to Pine,

all swarm methods have higher DiffAR values compared

with TF-IDF. All swarm methods performed about the

same, with simple swarm performing worse between

threshold values of 0.1–0.3.

Figure 16 plots MAP versus Recall for the simple

swarm, pheromone swarm, and TF-IDF methods. Simple

swarm performed better than TF-IDF at the 0.1–0.3

threshold. Pheromone swarm delta = 3 also performed

better than TF-IDF at the 0.1 threshold. Pheromone swarm

delta = 1 performs worse than TF-IDF, but as delta

increases, performance is comparable to TF-IDF. Note,

however, that MAP is still quite low at 0.23, indicating

that, on average, each document (high-level element) has

an average precision of 23%.

7.6 Overall summary

Though the swarm link weights in TF-IDF are not calcu-

lated the same, they serve a similar role, i.e., they serve as a

basis for filtering the candidate links. The higher the filter

(a close cosine similarity in documents in TF-IDF or a

higher agent count in swarm methods), the more the F

values decrease for TF-IDF and swarm methods on both

datasets.

Figure 3 shows that F values for TF-IDF perform better

than simple swarm below threshold values of 0.2 on the

Fig. 12 F and F2 measures for pheromone swarm, delta = 1, and

TF-IDF methods for the CM1 dataset

Fig. 13 F measure for the pheromone swarm, delta = 1, 3, 5, and the

TF-IDF methods for the CM1 dataset

Fig. 14 F2 measure for the pheromone swarm, delta = 1, 3, 5, and

the TF-IDF methods for the CM1 dataset
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Pine dataset. After the threshold is increased, the swarm’s

(with/without pheromones) F values are better than TF-IDF

as seen in Figs. 5 and 6. Furthermore, TF-IDF exhibits a

steep decline in F and F2 as threshold values increase.

Swarms demonstrate better values for F measurements for

higher threshold values.

Figure 10 shows better performance for the TF-IDF

method than simple swarm on the CM1 dataset, achieving

0.28 for F and 0.37 for F2. Simple swarm performs better

than TF-IDF past the 0.4 threshold.

Pheromone swarm, in general, performed better than sim-

ple swarm on the CM1 dataset. Pheromone swarm with

delta = 3 reached the highest value for F of 0.21 at the 0.6

threshold. Furthermore, pheromone swarm exhibited a grad-

ual increase in F value as the threshold increased. TF-IDF

reached its peak F value of 0.28 at the 0.3 threshold and then

declined sharply as threshold values increased. The same

trend is observed with TF-IDF in the CM1 and Pine datasets

for the F measurement. The F2 values for the swarm methods

exhibited a slightly different behavior. F2 values slowly

declined as the threshold increased for all swarm methods.

Even in these instances, the swarms displayed a more gradual

change in performance as the threshold increased. Pheromone

swarm F2 values gradually decreased from 0.25 to 0.18.

In summary, the simple swarm approach showed some

advantage over the TF-IDF method on the Pine dataset, yet

it did not fare as well on CM1. At the same time, with

pheromone swarm, any advantage visible on the Pine

dataset was lost. Pheromone swarm performance on the

CM1 set improved over simple swarm but still underper-

formed TF-IDF. A possible explanation for this is the way

that the high and low elements are connected. The Pine

dataset contains 49 high-level and 51 low-level elements,

with 2,499 possible links. The CM1 dataset contains 235

high and 220 low elements, creating a search space of

51,700 possible candidate links. The answer set for the

Pine dataset has 246 links, about 10% of all possible links.

In the CM1 dataset, the ratio of true links over possible

links goes down to less than 1% (361 true links divided by

51,700). CM1 also uses a significant amount of technical

terms and acronyms, causing the swarm agents to end up at

incorrect low-level elements.

It appears that in a compact dataset such as Pine the

pheromones make the agents ‘‘over-choose’’ certain links.

This leads to lower starting recall and higher precision as seen

in Fig. 4. CM1, on the other hand, the more focused selection

in a sparsely linked set, delivers better precision than simple

swarm. Agents get to pick proper links based on the phero-

mone markings previously deposited by other agents.

For the CM1 dataset, the MAP measurements exhibited

some variance with regard to the pheromone swarm

method. Pheromone swarm at delta = 3 performed just

‘‘above’’ the TF-IDF and all other swarm methods. As we

saw earlier, in CM1 dataset, increasing the affected

neighborhood delivered some performance gains up a

certain point using delta = 3. Simple swarm had better

MAP at lower thresholds for both datasets.

Another interesting result we observed was related to the

size of the neighborhood of a linking term. When we

increased the delta from 3 to 5 for the pheromone swarm,

we noticed a slight drop in performance across all mea-

surements and both datasets. Apparently, by depositing

pheromones on neighbors that are ‘‘too remote’’, the agent

introduces too much noise for future agents. For example,

on the CM1 dataset with delta = 3, the starting recall and

precision values were 56 and 8%, respectively. When we

increase the delta to 5, i.e., 5 neighboring terms on either

side of the linking term received deposits, the starting

recall and precision became 48 and 8%, respectively.

Maarek et al. [13] and Niu and Easterbrook [14] experi-

mented with a neighborhood of size five (5) using ‘lexical

affinities’. Our work differs from ‘lexical affinities’ in

Fig. 15 DiffAR versus recall for simple swarm, pheromone swarm,

and TF-IDF methods on the CM1 dataset

Fig. 16 MAP versus recall for the simple swarm, pheromone swarm,

and TF-IDF methods on CM1
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several ways. Unlike ‘lexical affinities,’ the swarms con-

sider neighbors that may cross sentence boundaries. ‘Lex-

ical affinities’ picks up two word units, whereas the swarm

considers all terms within the limits of the inspected

neighborhood. That may explain why we obtained an

optimal neighborhood of three (3) as opposed to five (as in

‘lexical affinities’). To achieve high-recall and high-pre-

cision results for the CM1 dataset, the collection of can-

didate links has to be tightly focused and highly precise.

The use of a thesaurus might have directed the swarm

agents to the proper document. In addition, a method of

handling acronyms might assist. In this case, the thesaurus

may become project specific.

In the case of TF-IDF at low threshold values, the method

considers a greater number of the low-level elements as

possible candidate links, thus yielding higher recall at the

cost of precision. The swarm method, a more focused

approach than TF-IDF, limited the ‘‘discovery horizon’’ for

the agents by focusing on the top terms in a textual element,

hence limiting the possible search alternatives.

8 Conclusions and future work

The paper presents two swarm methods in support of

requirements tracing: simple swarm and pheromone

swarm. The methods showed mixed results for the Pine

dataset, achieving recall of 78% with precision of 40% at a

0.2 threshold and slightly outperforming TF-IDF with 72%

recall and 48% precision at a 0.1 threshold. At the same

time, limitations with the simple swarm method were dis-

covered on the CM1 dataset.

The pheromone swarm displayed an improvement on

the sparsely connected CM1 dataset. The variations of delta

value (size of the affected neighborhood) implied the

importance of the linked term proximity in influencing the

agent behavior. A larger neighborhood in which to deposit

pheromones does not imply better search results.

The swarm methods performed better than TF-IDF for

the DiffAR measure for both datasets. This indicates that

human analysts who must vet candidate links will find

swarm links less frustrating to examine, as the higher link

weights correlate with correctness.

As mentioned earlier in the paper, these shortcomings

may be a result of the limitations imposed on the swarm

agent search behavior. As the TF-IDF method compares

documents based on term similarity, it treats a document as

a ‘‘bag of words’’ compared with another document, i.e.,

another ‘‘bag of words’’. The similarity between two

‘‘bags’’ is evaluated through the common terms. For the

swarm methods, we also used common terms to establish

links between documents. We noticed that F and F2 mea-

surements for the swarm methods were higher above the

0.4 threshold. This implies that a subset of all common

terms between two documents can be used to establish a

true link. This observation reiterates the reasoning for

enabling the swarm to concentrate on the top terms in a

document, rather than exploring all of them. The neigh-

borhood size variation suggests that one should consider

the term proximity of the linked term to determine candi-

date links between two documents.

The goal of this work is to build an initial model for

applying swarms to the requirements traceability problem

and to show its viability. The initial findings, though

mixed, urge us to experiment further with the method. We

plan to expand this work by using a thesaurus, permitting

the agents to discover links not only through a single term

but through term synonyms. We also plan to address the

use of term proximity as a possible attributing factor for

agent search behavior. In light of the observations made

that between 20 and 40% of common terms contribute the

highest level of true candidate links, it would be interesting

to see whether we can achieve the same results using a

smaller swarm population. A smaller population size

reduces the computation time. Another idea is to use more

than one type of pheromone, just like real ants do in nature

[37]. The expanded pheromone vocabulary may lead to a

greater variety in agent responses and search strategies.
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Appendix: Results for Pine and CM1 datasets

This Appendix provides results for the experiments run on

the Pine and CM1 datasets. Table 1 lists each Method

under each dataset with columns for Threshold, Recall,

precision, F, F2, DiffAR, and MAP. Table 2 presents sta-

tistical analysis of the secondary measures.

Table 1 Detailed results for the TF-IDF, simple swarm, and pheromone swarm methods on the Pine and CM1 dataset

TF-IDF TF-IDF

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

Pine CM-1

0.1 0.72 0.48 0.58 0.66 0.18 0.75 0.1 0.82 0.08 0.14 0.28 0.09 0.16

0.2 0.43 0.65 0.51 0.46 0.25 0.58 0.2 0.50 0.19 0.27 0.37 0.10 0.20
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Table 1 continued

TF-IDF TF-IDF

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.3 0.24 0.82 0.37 0.28 0.41 0.38 0.3 0.25 0.32 0.28 0.26 0.22 0.15

0.4 0.15 0.97 0.27 0.19 0.55 0.27 0.4 0.09 0.31 0.14 0.10 0.34 0.06

0.5 0.08 0.95 0.15 0.10 0.61 0.16 0.5 0.03 0.45 0.05 0.03 0.47 0.02

0.6 0.04 1.00 0.08 0.05 0.69 0.08 0.6 0.01 0.57 0.02 0.01 0.66 0.01

0.7 0.02 1.00 0.03 0.02 0.75 0.04 0.7 0.00 0.50 0.01 0.00 0.75 0.00

0.8 0.00 1.00 0.01 0.01 0.80 0.00

Simple swarm Simple swarm

0.1 0.86 0.27 0.41 0.60 0.46 0.76 0.1 0.80 0.04 0.07 0.15 0.28 0.23

0.2 0.78 0.40 0.53 0.66 0.41 0.74 0.2 0.66 0.05 0.10 0.20 0.23 0.22

0.3 0.65 0.52 0.58 0.62 0.44 0.67 0.3 0.50 0.07 0.12 0.22 0.19 0.21

0.4 0.55 0.63 0.59 0.57 0.46 0.61 0.4 0.41 0.08 0.14 0.23 0.24 0.19

0.5 0.48 0.71 0.58 0.52 0.57 0.57 0.5 0.35 0.11 0.16 0.24 0.23 0.18

0.6 0.40 0.76 0.53 0.44 0.66 0.52 0.6 0.26 0.13 0.17 0.22 0.34 0.16

0.7 0.34 0.81 0.48 0.39 0.72 0.47 0.7 0.22 0.15 0.17 0.20 0.46 0.15

0.8 0.28 0.83 0.41 0.32 0.85 0.41 0.8 0.19 0.17 0.18 0.19 0.57 0.14

0.9 0.22 0.86 0.35 0.26 0.93 0.36 0.9 0.16 0.19 0.17 0.16 0.72 0.13

Pheromone swarm d = 1 Pheromone swarm with d = 1

0.1 0.63 0.54 0.58 0.61 0.38 0.68 0.1 0.58 0.07 0.13 0.24 0.27 0.14

0.2 0.46 0.63 0.53 0.49 0.43 0.57 0.2 0.44 0.10 0.17 0.27 0.23 0.15

0.3 0.33 0.64 0.44 0.37 0.58 0.48 0.3 0.37 0.12 0.18 0.26 0.21 0.16

0.4 0.28 0.66 0.39 0.31 0.64 0.45 0.4 0.30 0.13 0.19 0.24 0.31 0.14

0.5 0.25 0.69 0.37 0.29 0.73 0.42 0.5 0.26 0.15 0.19 0.23 0.35 0.15

0.6 0.23 0.73 0.35 0.27 0.76 0.40 0.6 0.23 0.17 0.19 0.21 0.41 0.15

0.7 0.21 0.78 0.33 0.24 0.89 0.39 0.7 0.20 0.18 0.19 0.20 0.57 0.15

0.8 0.19 0.84 0.31 0.23 0.93 0.37 0.8 0.19 0.20 0.19 0.19 0.62 0.14

0.9 0.18 0.87 0.30 0.22 0.95 0.37 0.9 0.16 0.21 0.18 0.17 0.82 0.14

Pheromone swarm d = 3 Pheromone swarm with d = 3

0.1 0.59 0.54 0.56 0.58 0.44 0.66 0.1 0.56 0.08 0.13 0.25 0.26 0.22

0.2 0.42 0.62 0.50 0.45 0.52 0.54 0.2 0.40 0.10 0.16 0.25 0.27 0.20

0.3 0.35 0.67 0.46 0.39 0.60 0.51 0.3 0.34 0.12 0.18 0.25 0.28 0.19

0.4 0.30 0.74 0.42 0.34 0.70 0.47 0.4 0.30 0.14 0.19 0.25 0.29 0.18

0.5 0.27 0.77 0.40 0.31 0.75 0.45 0.5 0.27 0.16 0.20 0.24 0.35 0.17

0.6 0.24 0.81 0.37 0.28 0.88 0.42 0.6 0.25 0.19 0.21 0.23 0.40 0.17

0.7 0.22 0.84 0.34 0.25 0.93 0.40 0.7 0.22 0.21 0.21 0.22 0.50 0.16

0.8 0.20 0.87 0.32 0.23 0.95 0.37 0.8 0.18 0.20 0.19 0.19 0.69 0.14

0.9 0.19 0.89 0.31 0.23 0.98 0.37 0.9 0.17 0.22 0.19 0.18 0.77 0.13

Pheromone swarm d = 5 Pheromone swarm with d = 5

0.1 0.52 0.52 0.52 0.52 0.45 0.58 0.1 0.48 0.08 0.13 0.23 0.27 0.21

0.2 0.38 0.63 0.48 0.41 0.52 0.49 0.2 0.38 0.11 0.17 0.25 0.25 0.19

0.3 0.33 0.69 0.45 0.37 0.60 0.46 0.3 0.31 0.12 0.18 0.24 0.25 0.18

0.4 0.28 0.71 0.40 0.31 0.67 0.41 0.4 0.28 0.14 0.18 0.23 0.31 0.18

0.5 0.24 0.71 0.35 0.27 0.75 0.38 0.5 0.24 0.15 0.18 0.21 0.39 0.16

0.6 0.23 0.77 0.35 0.26 0.79 0.38 0.6 0.22 0.16 0.18 0.20 0.55 0.16

0.7 0.21 0.81 0.34 0.25 0.84 0.37 0.7 0.20 0.19 0.20 0.20 0.65 0.15

0.8 0.19 0.85 0.31 0.23 0.93 0.36 0.8 0.18 0.20 0.19 0.18 0.77 0.14

0.9 0.18 0.86 0.30 0.21 1.00 0.33 0.9 0.17 0.21 0.19 0.17 0.86 0.13
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